Plant Species Biometric Using Feature Hierarchies
نویسنده
چکیده
____________________________________________________________________ Biometric identification is a pattern recognition based classification system that recognizes an individual by determining its authenticity using a specific physiological or behavioural characteristic (biometric). In contrast to number of commercially available biometric systems for human recognition in the market today, there is no such a biometric system for plant recognition, even though they have many characteristics that are uniquely identifiable at a species level. The goal of the study was to develop a plant species biometric using both global and local features of leaf images. In recent years, various approaches have been proposed for characterizing leaf images. Most of them were based on a global representation of leaf peripheral with Fourier descriptors, polygonal approximations and centroid-contour distance curve. Global representation of leaf shapes does not provide enough information to characterise species uniquely since different species of plants have similar leaf shapes. Others were based on leaf vein extraction using intensity histograms and trained artificial neural network classifiers. Leaf venation extraction is not always possible since it is not always visible in photographic images. This study proposed a novel approach of leaf identification based on feature hierarchies. First, leaves were sorted by their overall shape using shape signatures. Then this sorted list was pruned based on global and local shape descriptors. The consequent biometric was tested using a corpus of 200 leaves from 40 common New Zealand broadleaf plant species which encompass all categories of local information of leaf peripherals. Two novel shape signatures (full-width to length ratio distribution and half-width to length ratio distribution) were proposed and biometric vectors were constructed using
منابع مشابه
Detection of Unhealthy Region of plant leaves using Neural Network
A leaf is an organ of vascular plant and is the principal lateral appendage of the stem. Each leaf has a set of features that differentiate it from the other leaves, such as margin and shape. This work proposes a comparison of supervised plant leaves classification using different approaches, based on different representations of these leaves, and the chosen algorithm. Beginning with the repres...
متن کاملA Review on Plant Leaf Classification and Segmentation
A leaf is an organ of vascular plant and is the principal lateral appendage of the stem. Each leaf has a set of features that differentiate it from the other leaves, such as margin and shape. This paper proposes a comparison of supervised plant leaves classification using different approaches, based on different representations of these leaves, and the chosen algorithm. Beginning with the repre...
متن کاملApplication of modified balanced iterative reducing and clustering using hierarchies algorithm in parceling of brain performance using fMRI data
Introduction: Clustering of human brain is a very useful tool for diagnosis, treatment, and tracking of brain tumors. There are several methods in this category in order to do this. In this study, modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) was introduced for brain activation clustering. This algorithm has an appropriate speed and good scalability in dealing ...
متن کاملBiometric Template Feature Extraction and Matching Using ISEF Edge Detection and Contouring Based Algorithm
In present world, biometric base authentication system is used by many agencies for security purpose. Use of important characteristics of biometric based authentication system become so popular because every human presents unique biometric characteristics and biometric recognition done automatically. Biometric authentication system is divided into four steps like biometric template acquisition ...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کامل